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Aggression is an adaptive behavior that plays an important role in gaining access to
limited resources. Aggression may occur uncoupled from reproduction, thus offering a
valuable context to further understand its neural and hormonal regulation. This review
focuses on the contributions from song sparrows (Melospiza melodia) and the weakly
electric banded knifefish (Gymnotus omarorum). Together, these models offer clues
about the underlying mechanisms of non-breeding aggression, especially the potential
roles of neuropeptide Y (NPY) and brain-derived estrogens. The orexigenic NPY is well-
conserved between birds and teleost fish, increases in response to low food intake,
and influences sex steroid synthesis. In non-breeding M. melodia, NPY increases
in the social behavior network, and NPY-Y1 receptor expression is upregulated in
response to a territorial challenge. In G. omarorum, NPY is upregulated in the preoptic
area of dominant, but not subordinate, individuals. We hypothesize that NPY may
signal a seasonal decrease in food availability and promote non-breeding aggression.
In both animal models, non-breeding aggression is estrogen-dependent but gonad-
independent. In non-breeding M. melodia, neurosteroid synthesis rapidly increases in
response to a territorial challenge. In G. omarorum, brain aromatase is upregulated
in dominant but not subordinate fish. In both species, the dramatic decrease in food
availability in the non-breeding season may promote non-breeding aggression, via
changes in NPY and/or neurosteroid signaling.

Keywords: neurosteroids, territoriality, food intake, testosterone, estradiol, songbird, aromatase, electric fish

INTRODUCTION

In all vertebrate classes, agonistic behavior is an adaptive social behavior that plays an important
role in gaining access to limited resources. Arising early in animal evolution, aggression strongly
impacts survival and fitness of individuals, and thus both aggressive behavior and its physiological
regulation are under strong evolutionary pressures. This review focuses on two neuroethological
models, the song sparrow (Melospiza melodia) and the weakly electric banded knifefish
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(Gymnotus omarorum), and their contributions to understanding
the neuroendocrinology of agonistic behavior, particularly
territorial aggression.

Although bony fish originated 400 MYA, while birds just 150
MYA, neuroanatomical and functional studies indicate that the
neural circuits that regulate social behavior are highly conserved
across vertebrates and play similar roles in the regulation of social
behaviors (O’Connell and Hofmann, 2012). Originally described
in mammals (Newman, 1999), the social behavior network (SBN)
consists of reciprocally connected brain regions located in the
forebrain, midbrain and hindbrain. More recent work suggests
that a broader social decision-making network, which also
includes the mesocorticolimbic reward system, regulates adaptive
social behaviors in response to different contexts or stimuli.
Birds and teleost fish, as well as reptiles and amphibians, all
contain this social decision-making network that is homologous
with the mammalian counterpart and has similar activation
patterns in similar social contexts (O’Connell and Hofmann,
2012). These common features enable comparative studies in
different species to establish general principles in the regulation
of social behavior, such as aggression, among vertebrates. Both
song sparrows and banded knifefish display territorial aggression
throughout the year. Although aggression is generally more
common in the breeding season, ecological pressures can also
lead to territorial aggression in the non-breeding season, a
behavior that is displayed in these two species, as well as in
mammals (Jasnow et al., 2000, 2002; Trainor et al., 2006). Non-
breeding territorial aggression offers a novel context to further
understand the underlying mechanisms of aggression.

NON-BREEDING TERRITORIAL
BEHAVIOR

Many animals carefully evaluate the cost–benefit ratios of
agonistic interactions since such encounters are very costly
in terms of time, energy, and potential injuries. In many
species, individuals establish dominant-subordinate relationships
to minimize the costs of protracted aggression. The dynamics of
aggression are well-studied in both song sparrows and banded
knifefish. Both display robust territorial aggression during the
non-breeding season.

Melospiza melodia is common throughout North America.
In the Pacific Northwest, where the climate is humid maritime,
song sparrows are sedentary and exhibit year-round territoriality
(except briefly during molt) (Wingfield and Hahn, 1994).
Aggressive behavior in this species has been widely studied
in the field. In a simulated territorial intrusion (STI), a live
caged conspecific decoy and song playback are placed in the
subject’s territory for 10 or 30 min (Heimovics et al., 2013).
During an STI, territorial males exhibit robust and stereotyped
aggressive displays that are easily quantifiable. The number of
songs, number of flights near the decoy, time spent within 5 m
of the decoy, and closest approach to the decoy are recorded as
indicators of aggressiveness (Heimovics et al., 2013). Similarly,
in a laboratory-STI paradigm, the subject cage is placed adjacent
to the decoy cage (with or without conspecific song playback)

and the number of barrier contacts and time in proximity to the
decoy cage are recorded. In both field and laboratory, males show
similar behavioral responses year-round during the STI, although
the persistence of aggression after the STI (when the stimuli are
removed) is reduced during the non-breeding season (Wingfield,
1994). This reduction of persistence in the non-breeding season
is energetically advantageous for these small songbirds (∼25 g
body mass) at a time when temperatures are low, days are short,
and food is scarce.

Gymnotus omarorum inhabits Uruguay, where the climate is
humid subtropical. It displays year-round territorial aggression in
both males and females, and non-breeding intrasexual aggression
is robust and easily quantifiable (Batista et al., 2012; Silva
et al., 2013; Quintana et al., 2016). In laboratory settings,
the acquisition and defense of territories in non-breeding
G. omarorum are mediated by agonistic encounters (Perrone
et al., 2019). During dyadic encounters in a neutral arena, fish
engage in rapid escalating conflicts that resolve in <3 min,
with the establishment of a clear dominant/subordinate status.
The only known predictor of contest outcome is body size.
Agonistic behavior in G. omarorum is subdivided into three
distinct phases, each with characteristic behaviors. First is a brief
evaluation phase that ends with the first attack. Second is a
contest phase characterized by overt aggression, where attacks
of both contenders correlate positively, showing escalation. Last
is a post-resolution phase where the dominant may continue
attacking while the subordinate fish retreats without retaliation
(Batista et al., 2012; Zubizarreta et al., 2015). In G. omarorum
contests, subordinates display electric signals in a sequential
pattern: first interrupting their electric discharge, then emitting
transient electric communication signals in “chirps” and finally,
adopting a lower post-resolution discharge rate (Batista et al.,
2012; Perrone and Silva, 2018).

Why do animals display territorial aggression in the non-
breeding season? It has been proposed that this behavior may
arise to secure breeding sites for future reproduction, for shelter,
and/or to ensure food resources. In sedentary bird populations
in mid to high latitudes, such as song sparrows, territorial
aggression in the non-breeding season increases survival by
allowing access to food to meet the large energetic costs during
cold winters. This seems especially important in hatch-year
males, where individuals that gain territories in their first autumn
have a higher overwinter survival rate than those that do
not (Arcese, 1989). In these latitudes, non-breeding birds face
multiple factors impacting metabolism, including reduced food
availability, reduced foraging time due to shorter day lengths and
inclement weather, and depletion of energy reserves to endure
longer overnight fasts during low temperatures (Heimovics
et al., 2013). Metabolite profiling reveals non-breeding male
song sparrows exhibit lower fat deposition and higher fatty acid
oxidation compared to breeding birds (Fokidis et al., 2019).
This is consistent with a shift toward a catabolic state with an
increased reliance on stored fat reserves, and this could amplify
the need for non-breeding aggression to maintain access to a
replenishing food supply.

In teleost fish, year-round territoriality also seems to be related
to ensuring foraging grounds. Tropical damselfishes establish
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well-defined year-round territories on corals (Brawley and Adey,
1977; Wallman et al., 2004) where they cultivate algae as a main
food source (Lobel, 1980; Sammarco et al., 1983). When fish are
not reproductively active, both sexes are highly territorial, fiercely
defending their food source (Karino and Kuwamura, 1997; Hata
and Umezawa, 2011). Gymnotus omarorum, from mid-latitudes,
has year-round territoriality that may be due to its need to forage
given its extremely high basal metabolic requirements. These
animals continuously sense the world around them by producing
and receiving electric discharges, a process that is energetically
very costly (Markham et al., 2016). Fish that are physically larger
also discharge electrical signals of higher amplitude (Caputi
and Budelli, 1995) which may contribute to the need for larger
foraging grounds. A field study in which the determinants of
non-breeding spacing were explored during the winter shows that
body size, but not sex, correlates positively with territory size
(Zubizarreta et al., 2020a). Oxygen, a limiting physico-chemical
variable in aquatic ecosystems, also correlates with territory size.
Higher levels of dissolved oxygen may enable fish to defend
large territories because their capacity for aerobic respiration is
enhanced. The energetic requirements, and thus foraging needs,
are probably the same in both sexes during the non-breeding
season, and this may explain why territory sizes in the wild are not
different between males and females (Zubizarreta et al., 2020a).

NPY: MEDIATOR OF A SEASONAL
ENVIRONMENTAL CUE PROMOTING
NON-BREEDING AGGRESSION?

In mid to high latitudes, photoperiod is the most robust
environmental factor regulating life cycles. Nevertheless, food
availability can be a supplementary cue that allows for year-
to-year flexibility (Perfito et al., 2008). Social behavior is
intimately linked to feeding at the behavioral level. Moreover,
neuropeptides involved in food intake are expressed in the
SBN across vertebrates (Fischer and O’Connell, 2017). Among
these neuropeptides, the orexigenic neuropeptide Y (NPY), a 36-
amino-acid amidated peptide, is particularly important. NPY is
extremely well-conserved throughout vertebrate evolution with
only a single amino acid differing between mammalian and avian
NPY, and 83–85% homology in primary structure between birds
and teleost fish (Chartrel et al., 1991; Blomqvist et al., 1992;
Larhammar et al., 1992, 1993; Larhammar, 1996). The entire
NPY signaling system over the 450 MYA of gnathostome (jawed
vertebrate) evolution appears to be under strong stabilizing
selection, resulting in structural conservation. Furthermore,
other orexigenic neuropeptides, such as orexin, are also well
conserved in vertebrates (Zendehdel and Hassanpour, 2014).
Investigations into NPY function in bird and fish species have
shown that the injection of this peptide stimulates feeding
(Kuenzel et al., 1987; Richardson et al., 1995; Strader and Buntin,
2001; Davies and Deviche, 2015; Chen et al., 2016) reviewed
in Matsuda et al. (2012) and Volkoff (2019). Fasting, on the
other hand, increases NPY gene expression (Boswell et al., 2002;
Yang et al., 2018; London and Volkoff, 2019a,b), and suppressing
NPY decreases food intake (Chen et al., 2016), reviewed in
Matsuda et al. (2012). NPY also regulates aggression and/or

dominance/subordination in fish (Doyon et al., 2003; Filby et al.,
2010; Baran and Streelman, 2020) and mammals (Karl et al.,
2004; Emeson and Morabito, 2005; Lischinsky and Lin, 2020).
Collectively, these studies demonstrate important physiological
and behavioral functions of NPY, thus making it a good candidate
for mediating the environmental factors that promote non-
breeding territorial aggression in both fish and birds.

In both the song sparrow and banded knifefish, NPY in the
SBN might be involved in non-breeding territorial aggression
(Mukai et al., 2009; Fokidis et al., 2019; Eastman et al., 2020).
In M. melodia, NPY immunoreactive cell bodies are found
in some regions of the SBN (infundibulum and ventromedial
hypothalamus) and the ventral tegmental area (VTA) (Fokidis
et al., 2019), whereas fibers are ubiquitous in the SBN. NPY
fibers are also present in the nucleus tractus solitarius, which
contains specialized neurons that directly respond to changes
in extracellular glucose and/or free fatty acids (Mizuno and
Oomura, 1984; Blouet and Schwartz, 2012). Thus, NPY might
integrate the SBN with metabolic information provided by these
glucostatic and lipostatic neurons. Non-breeding song sparrows
show elevated NPY in several regions of the SBN, compared
to breeding sparrows (Fokidis et al., 2019). Song sparrows
challenged with 30 min of STI upregulated gene expression for
the NPY-Y1 receptor in the hypothalamus in the non-breeding
season, but not in the breeding season (Mukai et al., 2009),
suggesting that NPY signaling may respond quickly to changes in
the social environment but only during the non-breeding season.

In Gymnotus omarorum non-breeding males have NPY
transcripts in the POA. Fish dyads that competed over territory
and established social hierarchy were subjected to transcriptomic
profiling of the POA, and genes related to food intake were
robustly clustered according to social phenotype. Dominants,
which had acquired the territory through agonistic behavior
and displayed exclusive access to its shelter and surrounding
area, upregulated NPY and galanin transcripts. Subordinates,
which remained in the periphery of the tank avoiding the
dominant male, upregulated transcripts of the anorexigenic
molecule cholecystokinin (Eastman et al., 2020). This matches
a report in other teleost fish which upregulate orexigenic genes
(galanin in particular) in dominant fish (Renn et al., 2008). In all,
these results support a role for NPY in non-breeding territorial
aggression. NPY may be a mediator signaling the seasonal
decrease of food availability and promoting the mechanisms
specifically underlying aggression in the non-breeding season, a
hypothesis that will be tested in the future.

NEUROESTROGENS AS KEY
REGULATORS OF NON-BREEDING
AGGRESSION

Aggressive behaviors that occur outside of the breeding season
suggest a role for non-gonadal regulatory mechanisms (reviewed
in Jalabert et al., 2018). The independence of non-breeding
aggression from gonadal androgens has been well established.
In both M. melodia and G. omarorum, aggression occurs
when the gonads are regressed. Furthermore, gonadectomy
in the non-breeding season does not affect contest outcome,
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dynamics, aggression levels, or submissive displays (Wingfield,
1994; Jalabert et al., 2015). Thus, gonadal hormones are not
necessary for the expression of aggressive behavior during
the non-breeding season in these species. In addition, as in
other species that display non-breeding aggression, circulating
androgens do not increase in response to territorial challenges
(Hau and Beebe, 2011; Vullioud et al., 2013; Ros et al., 2014).
However, estrogens have a prominent role in the regulation of
non-breeding territorial aggression in both species. Aromatase
inhibitors reduce non-breeding aggression in both M. melodia
and G. omarorum (Soma et al., 1999, 2000a,b; Jalabert et al.,
2015; Zubizarreta et al., 2020b). Direct actions of androgens, the
substrate of aromatase, have been ruled out, as androgen receptor
antagonism has no effect on non-breeding aggression (Sperry
et al., 2010; Zubizarreta et al., 2020b). The effects of aromatase
inhibition are rescued by concurrent estradiol replacement in
M. melodia (Soma et al., 2000b). In both species, estrogens
affect behavior in less than 90 min, which suggests non-genomic
actions, most probably produced by locally synthesized steroids.

The brain is an important source of estrogens that promote
non-breeding territorial aggression. In M. melodia, aromatase
mRNA and enzymatic activity are present in the SBN during
the non-breeding season (Soma et al., 2003; Wacker et al.,
2010). Brain-derived estrogens might be synthesized from
precursors such as progesterone or dehydroepiandrosterone
(DHEA). Although circulating progesterone levels are similar
year-round, progesterone in the SBN is higher in the non-
breeding season. This neural progesterone might provide
substrate for neural androgen and estrogen synthesis (Jalabert
et al., 2021). Circulating levels of DHEA are higher than
those of testosterone in the non-breeding season (Soma and
Wingfield, 2001), and DHEA can be metabolized in the
brain into active androgens and estrogens (Pradhan et al.,
2008). In the non-breeding season, a territorial challenge
rapidly increases the activity of brain 3β-HSD, an enzyme that
converts DHEA to androstenedione (Pradhan et al., 2010). This
suggests there is a local increase of aromatizable androgens,
which may lead to a rise in local estrogen production. In
G. omarorum, preliminary results show that estrogens are
exclusively brain derived in the non-breeding season in both
males and females. Moreover, transcriptomic data from the
POA show that aromatase and other steroidogenic enzymes
are expressed in the non-breeding season. Males that acquired
a stable dominant status after an agonistic encounter show
increased brain aromatase transcripts. Conversely, subordinate
males show increased expression of transcripts involved in the
conversion of androgens away from estrogens and toward non-
aromatizable androgens (Eastman et al., 2020).

A HYPOTHESIS ON THE REGULATION
OF NON-BREEDING AGGRESSION

Many studies link food intake physiology and sex steroids. For
example, in the gymnotiform Brachyhypomus gauderio, long-
term food restriction increases circulating androgens, as well as
electric signaling in response to social challenge (Gavassa and

FIGURE 1 | Food availability may be an environmental factor that modulates
the expression of territorial aggression through neuropeptide Y (NPY) and
neurosteroid signaling. A seasonal decrease in food availability increases NPY
in the social behavior network (SBN). NPY may stimulate non-breeding
territorial aggression directly, or via the production of neuroestrogens. In
addition, a decrease in food availability may increase circulating precursors to
neuroestrogens. Agonistic encounters also affect the neuroendocrine state as
dominants show an increase in NPY and aromatase expression, which may
reinforce the defense of the foraging territory.

Stoddard, 2012). In the zebra finch (Taeniopygia guttata), an acute
fast decreases plasma testosterone levels, but increases plasma
DHEA levels and estrogen levels in the VTA and periaqueductal
gray (Fokidis et al., 2013). These areas contain aromatase (Shen
et al., 1995) and NPY (Fokidis et al., 2019). Furthermore,
fasting increases agonistic behavior in this otherwise gregarious
species (Fokidis et al., 2013). In fish, NPY is present in key
neuroendocrine regulatory centers, such as the POA, and is
regulated by sex steroids (Peng et al., 1994). In turn, NPY has
seasonal actions on gonadal sex steroid production through
its stimulation of pituitary gonadotrophins (Kah et al., 1989;
Kalra and Crowley, 1992; Peng et al., 1994; Yaron et al.,
2003). Collectively, these data suggest an evolutionary conserved
relationship between food intake and sex steroids that is mediated
at least partly by NPY signaling. These observations suggest
the hypothesis that decreased food availability during winter
increases brain NPY signaling, which stimulates neuroestrogen
synthesis and thus aggression. NPY might also affect aggression
via other mechanisms, such as serotonin neurotransmission
(Karl et al., 2004; Figure 1). In addition, agonistic encounters
affect NPY and neurosteroid signaling, reinforcing the defense of
the foraging territory. The similarities between the two species
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highlighted here might be relevant for understanding non-
breeding territorial aggression in other species.
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